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ABSTRACT: Mathematical modelling of physical and mechanical properties of plastic foam as well as numerous practical applications

requires knowledge of foam structural characteristics. A necessity exists to determine the characteristics of the spatial structure of in-

homogeneous materials comprising inclusions of other material, e.g., polyurethane foam without destructing the material and analysis

of each element. A methodology is elaborated for preparing highly porous plastic foam specimens and investigation of foam strut-

like structure with light microscopy (LM) by taking images in three mutually perpendicular planes. A mathematical model is devel-

oped for highly porous plastic foam for the determination of probability density functions of its building elements—polymeric struts’:

(a) length and (b) angles, using LM images in three mutually perpendicular planes. Computer codes are created and parameters of

distribution functions for strut’s length and angles are calculated using experimental data for verification. A good correspondence of

the modelling results with experimental data is proved to exist. VC 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39477.
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INTRODUCTION

Symmetry of physical and mechanical properties of materials is

connected to symmetry of their structure, e.g. free-rise plastic

foam with regard to elasticity and strength are transtropic com-

posite materials (polymer and gaseous phase) with the plane of

isotropy perpendicular to the foam rise direction (RD). Mathe-

matical modelling of physical and mechanical properties of

foam materials as well as numerous practical applications

requires knowledge about their structure. A necessity exists to

determine the characteristics of the actual spatial structure of

inhomogeneous materials (Porous ceramics, porous plastics,

fibers’ reinforced concrete, human bone tissues, etc.) comprising

inclusions of other material (Gas bubbles, metal beads, short

metal fibers, irregular silica particles, etc.) without destructing

the material and analysis of each element.

Two major cases can be distinguished for plastic foam, e.g. pol-

yisocyanurate (PIR) and polyurethane (PUR) with regard to

structure: (1) low porosity P < 30%, when the foam structure

is formed by un-interconnecting gas bubbles and distribution of

bubbles’ diameters has to be determined and (2) high porosity

P > 90%, when the foam structure is formed by a framework

of polymeric struts connected in nodes.1–3 Only highly porous

foams are considered further where the polymeric struts are the

main load-carrying elements.

The experimental studies on plastic foam cellular structure of-

ten deal with the cell’s diameters’ projections, measured from

images in directions parallel and perpendicular to rise direction.

Histograms of cell’s principal diameters’ projections dp
1, dp

2,

and dp
3 on three image planes, determined with the help of

light microscope (LM) or scanning electron microscope (SEM),

were presented in Refs. 2,4. A nonlinear relationship between

moduli of elasticity E1, E2, and E3 and elongation degrees K of

the cells K1 5 dp
3/dp

1 and K2 5 dp
3/dp

2 was derived. Frequency

of cells elongation degrees in free-rise blocks of PUR and PVC

foams as a function of block’s thickness coordinate was investi-

gated from LM images.2 It was found that in the middle of a

PVC block the cells tend to be nearly spherical and have K1, K2

� 2 at the bottom and top of the block.

An investigation was performed on the relationships between

cell morphology, density, and mechanical properties in trans-

tropic PUR materials moulded in cylindrical moulds.4 Three

mould sizes were used to study changes in cell morphology

(Projections of cell area, cell diameter, aspect ratio, cell angle,

cell edge length, cell face thickness, and cell edge thickness on

SEM image plane), density, and mechanical properties (Young’s

modulus and collapse stress) with respect to position within the

mould. The mean cell diameter’s projection was determined

from SEM images as average length of diameter measured at 2

degrees increment. The density, closely linked to structural
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characteristics was shown to increase from the top to the bot-

tom of the reference mould but did not change significantly in

the small and tall moulds.

The mercury absorption test was used to determine frequency

of actual pores’ diameters in highly porous closed-cell PUR

foam.1 The corresponding histograms were markedly asymmet-

ric with the maximum shifted to the smaller diameters’ values.

The method was reported as not suited for open cell foam

structure characterising. For better understanding of the foam-

ing nature of highly porous foam the frequency of bubbles radii

in low and average porosity foam P 5 30–70% was determined

and was reported to be asymmetric as well with the maximum,

shifted to the smaller radii values.5,6 Modelling of distribution

functions of bubbles’ radii from circles’ radii distribution on the

sample’s cross section was undertaken.

Structural characteristics such as the mean cell strut thickness,

cell size, and their standard deviations were obtained by the

nondestructive X-ray tomography, using the Phoenix Nanotom.7

The nano-tom produced X-rays by accelerating electrons that

hit a target material. During a measurement, a specimen rotated

while it was exposed to X-rays. The projections made, were

combined to generate a reconstruction of the volume of the

specimen, which resulted in a high 3D resolution image of the

specimen. The high resolution image was then analyzed with

image processing software to obtain properties like the mean

cell size, the mean cell strut thickness and their standard devia-

tions. Within that investigation the software developed by

Scanco Medical AG was used. The results were obtained only

for closed-cell foam.

A certain similarity exists in investigation of fiber architecture

in short fiber-reinforced polymer composite foam and determi-

nation of struts spatial distribution characteristics.8 A nondes-

tructive X-ray imaging technique was used to determine the

internal structure in a phenolic polymer foam reinforced with

short glass fibers. The computerized tomography was used to

measure the fiber length distribution and orientation distribu-

tion, the two parameters that are critical to the behavior of

short-fiber reinforced composites.

The Theoretical Studies

In one of the first theoretical models of plastic foam, a com-

bined strut-node element was implemented.9 Struts were dis-

tributed randomly in the space and their amount in a spatial

angle was calculated based on the total amount of struts in a

unit volume. Only isotropic structure was considered assuming

that the struts were distributed randomly. Similar approach was

used in Ref. 10. Structural units comprising a strut and an air

sheath were modelling the structure in Ref. 11, where an angu-

lar distribution function was modelling the structural anisot-

ropy. The orientation of a structural unit with respect to the

foam coordinate frame of reference was defined by the parame-

ter h, where h was the angle between the foam principal axis O3

(parallel to the foam rise direction) and the unit’s axis O3 (par-

allel to the longitudinal axis of a strut). The overall foam mod-

ulus could be estimated for an angular distribution of structural

units by mechanically coupling such a distribution with a conti-

nuity of stress (Reuss average) or a continuity of strain (Voigt

average). For a random aggregate, the Reuss and Voigt values

lead to lower and upper bounds respectively.

Modelling of plastic foam structure rely widely on applying a

certain geometrical figure (Space filling or un-filling) as a model

cell: a cube, a hexagonal prism, a truncated cone, a tetrakaideca-

hedron, a pentagon dodecahedron, an ellipsoid, etc.1–3 The po-

rosity P of the foam is assigned to the model cell and the

dimensions of elements (Struts, nodes, and faces) are calculated

from geometrical considerations. The approach neglects the sta-

tistical distribution over the main characteristics of structural

elements: length, width, spatial orientation, etc.

In Ref. 12 a structural model was proposed combining the two

mentioned approaches: (1) a model cell and (2) orientational

averaging. The model cell was considered in the shape of a

sphere or an ellipsoid built around a node with N 5 2, 3, …,

10 evenly distributed struts emerging from it. To model the spa-

tial orientations, the strut system was rotated as a whole around

the node over three Euler’s angles uE, wE, and hE. Transtropy

was implemented by a linear coordinates’ transformation along

foam rise direction. Histograms of struts’ length distribution

were calculated for the obtained sample of N struts and found

to be asymmetric, with a maximum shifted to the smaller

values.

The Voronoi tessellation technique and the finite element

method were utilized to investigate the microstructure–property

relations of three-dimensional cellular solids (foams) that had

irregular cell shapes and nonuniform strut cross-sectional areas

(SCSAs).13 Perturbations were introduced to a regular packing

of seeds to generate a spatially periodic Voronoi diagram with

different degrees of cell shape irregularity and to the constant

SCSA to generate a uniform distribution of SCSAs with differ-

ent degrees of SCSA nonuniformity. The analysis was based on

a reference cell—tetrakaidecahedron (Kelvin cell).

In Refs. 14,15 the foam structure was represented by a sample

of struts that was obtained by turning a single strut in space to

undergo all spatial orientations. A model was presented for cal-

culating the linear elastic constants of highly porous plastics

having a strut-like structure by orientational averaging the rigid-

ity tensor of a structural element consisting of an gas sheath

and a load-carrying element in the form of a straight strut with

a piecewise constant cross section. The nonuniform orienta-

tional distribution of the elements was also taken into account.

Methods of statistical geometry are used for microstructural

modelling and analysis of crystals, metal melts, minerals, sus-

pensions. etc. The calculations lead to Gamma-functions and

analytical solutions can be found mainly for special cases, e.g.

even, increasing, decreasing, or triangular probability density

functions.1

Reasons for Undertaking the Research

Both the experimental and theoretical methods comprise several

drawbacks. The fact that length’ and angles’ projections are

determined from images and used as input data for struts’

length and angles in further modelling is mainly neglected. The

X-ray-based simulation requires availability of a nano-tome of a

sufficient capacity and does not provide deeper understanding
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of structure to model different elongation degrees of foam cells.

The theoretical approaches often rely on artificial regularization

of the structure. The models based on orientational averaging

are using angular distribution functions of length and angles

that are not verified experimentally because of the lacking of

corresponding data. No investigations are known to the author

developing methods for the determination of the probability

distribution of the actual dimensions and spatial orientation

angles of struts from LM, SEM, or other images. Therefore

experiments were performed and a mathematical model and

several computational codes were developed for highly porous

PUR foam, permitting to determine probability density func-

tions of polymeric struts’: (a) length and (b) spatial orientation

angles, using experimental data from the images obtained by a

penetrating light LM.

EXPERIMENTAL

The generalized Neumann’s principle determines that the sym-

metry of structure of a material cannot be higher than symme-

try of any of its physical properties. To estimate the mode of

mechanical anisotropy, the average Young’s moduli Ei, i, j 5 1,

2, and 3 in compression, standard deviations and coefficients of

variation were determined, Table I for five industrially manufac-

tured free-rise in a mould (RD parallel to OX3, Figure 1) PUR

foam blocks with average densities qf 5 33, 37, 53, 79, and 75

kg m23 and porosity P > 90%, P 5 1 2 qf/qpol, where qf and

qpol are densities of foam and monolithic polymer. The outer

crust of the blocks was removed to retain homogeneous mate-

rial with final dimensions 50 3 50 3 20 cm. The samples were

rectangular prisms 100 3 50 3 50 mm, strain rate e0 5

10%min21, temperature T 5 118�C. Four samples, cut out

from the bottom half (with regard to the height) of the blocks,

were tested for each point. The technical performance of tests

was similar to that presented by the author in Ref. 16.

As E3 > E1 � E2, material can be considered as transtropic with

regard to mechanical properties. As symmetry of mechanical

properties is linked to symmetry of structure, transtropic struc-

ture can be expected and investigations were planned in a corre-

sponding way.

Microscopy

A column 20 3 2.5 3 2.5 cm, height parallel to RD, was cut

out from each block. The column was situated in the geometri-

cal center of the blocks’ plane X1OX2 to minimize possible

Table I. Mechanical Properties of PUR Foam in Compression

N Characte-ristics

Block

1 2 3 4 5

1 Parallel to OX1

qf (kg m23) 33.2 37.4 54.6 81.0 75.0

60.0 61.3 60.3 60.5 60.3

0 (%) 3 (%) 1 (%) 1 (%) 0 (%)

E1 (MPa)a 4.2 5.7 9.4 18.9 22.9

60.2 60.3 60.3 61.7 62.8

5 (%) 6 (%) 3 (%) 9 (%) 13 (%)

2 Parallel to OX2

qf (kg m23) 32.7 33.6 49.2 76.4 75.1

60.2 60.4 60.1 60.2 61.8

1 (%) 1 (%) 0 (%) 0 (%) 2 (%)

E2 (MPa)a 4.5 5.3 11.3 19.2 21.4

60.2 60.2 60.9 62.5 62.7

4 (%) 4 (%) 8 (%) 13 (%) 13 (%)

3 Parallel to OX3

qf (kg m23) 33.1 38.5 54.4 80.3 74.0

60.2 60.3 60.2 60.3 61.2

1 (%) 1 (%) 0 (%) 0 (%) 2 (%)

E3 (MPa)a 10.5 7.5 20.1 26.5 31.5

60.5 60.1 60.3 61.1 61.2

4 (%) 1 (%) 2 (%) 4 (%) 4 (%)

E3/E1 2.47 1.32 2.14 1.40 1.43

E3/E2 2.33 1.40 1.77 1.38 1.47

Average E3/E1,2 2.40 1.36 1.95 1.39 1.45

Place in E3/E1,2 range 5 1 4 2 3

a Moduli E1, E2, and E3 were calculated at eii � 2%, ii 5 1, 2 and 3.
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influence of anisotropy because of contact with mould sides,

Figure 1. Two cubes 2.5 3 2.5 3 2.5 cm were cut out from

each column. Cube 1 was located on the bottom of the column/

block, cube 2 in the center of the column/block, difference in

the coordinates X3 of centers of cubes DX3 5 8.75 cm. A mark

on the far left top corner of the blocks, columns and cubes was

made to avoid unintended turns around OX3.

An experimental specimen 0.5 3 5 3 25 mm was cut from the

sides A, B, and C (X3 5 const., X2 5 const. and X1 5 const.,

where X1, X2, and X3 are foam principal symmetry axes) of a

cube (Figure 1) and attached to a glass slide. Light beams from

two external sources were directed to the specimen: (1) parallel

to the plane of specimen and (2) in angle � 30� with the verti-

cal axis OX3. 3 3 2 5 6 images (1024 3 768), 553, were taken

by a digital camera (DC; 4 mpx), attached to the LM for each

block as well as an image of a 1-mm-long calibrating size. The

focus of the LM was fixed on the upper struts of the surface.

The approximate depth of focus range was hF � 0.35 6 0.05

mm.

Elements on the images are projections of the actual (a) dimen-

sions of foam structural elements struts, nodes, and faces on the

image planes A, B, or C and (b) angles formed by the struts

with different axes. Lp
A, Lp

B, and Lp
C are projections of a strut’s

length L on images with planes parallel to A, B, and C; up, hp
B,

and hp
C are projections of a strut’s spherical angles u and h on

images with planes parallel to A, B, and C. Projections were

measured from printed images, taking into account the corre-

sponding image files on PC display simultaneously.

Measurements from LM Images

Image areas corresponding with the general character of an

image were chosen for determination of the struts’ length pro-

jections. Length projections were measured with a ruler, preci-

sion 6 0.5 mm; angles were measured with a protractor,

precision 6 1�. Application of a certain image processing

software was tested, but turned out to be less useful for the pur-

pose. It was important for the observer to consider all elements

one by one in the chosen area of the image. Only obvious

defects (Local angular orientation of a group of struts differing

from dominating orientation, untypically shaped struts, clusters

of base polymer forming untypical nodes, etc.), not correspond-

ing with the general character of the projections were omitted.

A subjective tendency of an observer to: (a) to choose longer

projections and (b) not to notice/include very short projections

was recognized and constantly corrected. At the same time a

short projection could correspond to (a) a short strut having

angle b1 � 0� with the image plane or to (b) a long strut hav-

ing b2 � 90� with the image plane, Figure 2.

As the foam in blocks 4 and 5 had densities 1.5–2 times higher

than foam in blocks 1, 2, and 3, their structural elements struts

and their projections visible on the images were smaller. To

reduce potential subjective error of the observer, choosing pro-

jections and measuring them, the images of foam 4 and 5 were

Figure 1. Cubes 1 and 2 in a free-rise foam block.

Figure 2. Projections of struts’ L1 and L2 on image plane A.
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printed in an enlarged scale (141%) to maintain app. equal con-

ditions for the observer. A certain insufficiency of short projec-

tions Lp of struts length 0 < Lp � 1 unit (1 mm on printed

images was denoted as 1 unit; scale 1 unit 5 1:55 mm) was

observed on the images A of specimens from 3, 4, and 5 blocks,

qf > 49 kg m23 possibly because of the merging of short struts

into clusters of base polymer.

A representative layer of foam was defined as a layer having

thickness equal to the depth of focus range hf. It was assumed

that the character of struts in the representative layer corre-

sponds to their average character in foam cubical specimens.

Principles for including strut’s length projections into the repre-

sentative statistical sample were formulated:

1. Only projections having both ends visible were considered

for including in the representative sample. It was important

for the observer to estimate properly how far reached the

strut while entering the node for each foam density.

2. Only projections depicted sharply along their whole length

or along a certain part of the length were included in the

sample. Elements with changing sharpness along length cor-

respond to struts situated angularly to the image plane and

having length reaching outside the representative layer. The

number of such elements was divided by 2 for each group

of length, since they belong to two representative foam

layers.

3. Blur elements were considered to be outside (above or

beyond) the representative layer and as such were not

included into the sample.

The struts’ length L, projections Lp, angles h, u, and projections

hp and up are continuous random variables. The number N of

elements in the representative statistical sample, necessary for a

sufficiently precise finding of the fitting theoretical probability

density function (the smoothing function) was determined. For

majority of A images N 5 100. Because of foam transtropy the

values of projections measured from images C and B, were

merged into a statistical sample B 1 C 5 BC of N 5 200 ele-

ments. Were the character of the distribution remained unclear,

number of elements was increased up to N 5 300. The scale

was not yet taken into account for convenience of operating

with images.

Values of projections Lp in a statistical sample were sorted and

arranged into I 5 ROUNDUP(Lp
max) number of classes, where

ROUNDUP(Lp
max) was the value of the biggest projection Lp

max

in the sample rounded up to the nearest biggest integer value.

The scale 141% was taken into account for foam 3 and 4 prior

to that. Class width h 5 1 unit,

ði21Þ h < L
pi
k � i h; i51; 2;…; I ; k51; 2;…;K i; (1)

where Ki – number of elements in the i-th class. Modes Lp
Amod

and Lp
BCmod of samples Lp

An, Lp
BCn, n 5 1, 2, …, N, were deter-

mined as central numbers of the modal class, where Lp
An, Lp

BCn

Table II. Experimental Data of Struts’ Projections

Image A Images B 1 C

Specimen Image N
Lp

Amax

(unit)
Lp

Amod

(unit) Imod
A

Lp
BCmax

(unit)
Lp

BCmod

(unit) Imod
BC

Lp
Aaver;

Lp
BCaver, (unit) s, (unit) v (%)

1-1 11A 300 11.0 1.5 2 - - - 3.7 2.3 63

11B111C 300 – – – 18.0 4.5 5 6.4 4.1 64

1-2 12A 100 11.5 2.5 3 – – – 4.2 2.6 63

12B112C 200 – – – 18.0 4.5 5 7.3 4.0 55

2-1 21A 100 13.0 2.5 3 – – – 4.8 2.7 57

21B121C 200 – – – 19.0 4.0 4 6.6 3.7 56

2-2 22A 100 12.0 2.5 3 – – – 5.1 2.8 54

22B122C 200 – – – 15.0 4.0 4 6.1 3.4 55

3-1 31A 100 7.0 1.5 2 – – – 2.7 1.4 53

31B131C 200 – – – 12.0 2.5 3 4.2 2.0 46

3-2 32A 100 8.0 2.5 3 – – – 3.0 1.6 51

32B132C 200 – – – 11.5 2.5 3 4.3 2.2 52

4-1 41A 100 6.0 1.5 2 – – – 2.2 1.2 55

41B141C 200 – – – 8.5 2.5 2 2.9 1.7 59

4-2 42A 200 8.2 2.5 3 – – – 2.5 1.4 55

42B142C 200 – – – 7.8 2.5 3 2.6 1.4 55

5-1 51A 100 6.0 1.5 2 – – – 2.2 1.3 58

51B151C 200 – – – 10.6 2.5 3 3.2 2.2 68

5-2 52A 100 6.4 2.5 3 – – – 2.4 1.3 55

52B152C 200 – – – 8.5 2.5 2 3.2 1.8 55
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- projections of Ln on planes A, B, and C, Imod—the number of

the modal class. The first initial and the second central moment

(Mean—the average value Lp
aver and the standard deviation s)

and coefficient of variation v were calculated for statistical sam-

ple of struts of each experimental specimen, Table II.17,18 Class

width 5 1 unit.

Histograms of probabilities p(Lp
i), i 5 1, 2, …, I for Lp

A and

Lp
BC were constructed, Figure 3. The asymmetric histograms

had a tail extending to the right and a mode at Lmod1. Around

85% of histograms had a second mode at Lp
mod2 > Lmod1,

p(Lp
mod2) < p(Lp

mod1). The presence of the second mode could

be explained by a certain close order of the gas bubbles in the

liquid phase and a subsequent regularization of the system of

cells and struts. SEM and LEM investigations approved that the

majority of cells were shaped like tetrakaidecahedrons or penta-

gon dodecahedrons.

For low porosity (P < 30%) isotropic foam the asymmetric var-

iation series of radii R of un-interconnecting circles on the sam-

ples’ cutting surface are often smoothed with a probability

density function in the mode of a power law with an exponen-

tial cutoff1:

f ðR; q; a; bÞ5Rq exp ð2aRbÞ; R > 0; q; a; and

b > 0; f ðR; q; a; bÞ � 0:
(2)

After normaliszation for the total length range of radii R:

f ðR; q; a; bÞ5ARq exp ð2aRbÞ; A51=

ð1
21

f ðR; q; a; bÞdR; (3)

where A is the normalization factor; q, a, and b the parameters

determining sharpness of maximum and asymmetry. As the his-

tograms of experimental values of projections Lp
A and Lp

BC

were found to be asymmetric and had a maximum shifted to

the smaller values, the same mode of function was chosen for

smoothing:

f ðLp; q; a; bÞ5AðLpÞq exp f2aðLpÞbg; Lp > 0; q; a; and

b > 0; f ðLp; q; a; bÞ � 0 and A51=

ð1
21

f ðLp; q; a; bÞdLp:

(4)

The theoretical probability was calculated:

DpðLp
i Þ5f ðLp

i Þ h; h51:0 unit; DpðLp
i Þ � pfLp

i21 < Lp � L
p
i211hg;

i51; 2; …; I

(5)

where Lp
i is the biggest value in the i-th class; Lp

0 5 0. The val-

ues of q and were fixed as q 5 1.0, b 5 1.5 in order to have

one parameter a and more obvious comparison of trends of dif-

ferent cases. Numerical analysis revealed that a values varied in

the limits 0.02 � a � 0.35 were appropriate to find the best fit-

ting theoretical functions for the experimental statistical sam-

ples. According to the method of moments, the parameter a,

providing the least difference between Lp
aver of the experimental

(E) and theoretical (T) data samples, was defined as the charac-

teristic parameter of the best fitting theoretical probability den-

sity function f(Lp, a):

ILp
aver

E2Lp
aver

T I � e; where e is the precision: (6)

The function f(Lp, a) comprises one parameter a therefore only

equality of one kind of moments—the means was required. Nu-

merical calculation results were presented in Table III. Parame-

ters a corresponding to probability density distribution

functions of struts’ length projections on experimental images

A, B, and C were denoted as ap
A

E and ap
BC

E and their difference

DapE 5 ap
A

E 2 ap
BC

E. To characterize the anisotropy of foam

blocks, anisotropy degree K3 was implemented as K3 5 ap
A

E/

ap
BC

E, K3 5 1.0 for isotropic foam. Gradient of anisotropy in a

foam block is characterized by DK3 5 K3
2 – K3

1, where K3
1 and

K3
2 are anisotropy degrees of the bottom experimental speci-

mens 1 and center specimens 2.

As both the type and parameter of function f(Lp, a) are known,

the hypothesis of fitting between the probability determined by

experimental histograms FE(x) and theoretical smoothing prob-

ability distribution functions FT(x) was evaluated according to

Kolmogorov’s criterion 19:

Dn5max jFEðxÞ2FT ðxÞj and Dn

ffiffiffiffi
N
p
� k; (7)

where N is the number of elements in the statistical sample. For

majority of experimental specimens considered, the quantity k
� 0.70 and P(k) � 0.711 that corresponds to a good fitting,

where P(k) is a tabulated probability for 0.0 � k � 2.0.19 It was

Figure 3. Distribution of Lp
A (black) and Lp

BC (grey) of the experimental

specimens: (a) 4-2 with the most equal statistical samples of length pro-

jections in planes A and B (or C) and (b) 1-1 with the most differing sta-

tistical samples of length projections in planes A and B (or C).
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concluded that foam in cubes 2 were more isotropic (Da2 <

Da1) than in cubes 1, as they were located closer to the top of

the free-rise block. That corresponded with the experimental

results reported in Refs. 1–3. To characterize the macroscopic

properties of the foam block, average anisotropy degree was

implemented as K3
aver 5 (K3

1 1 K3
2)/2. The value of K3

aver was

the smallest for block 4: K3
aver � 1.24 and the biggest for block

1: K3
aver � 2.45. LM images of (1) the most isotropic experi-

mental specimen 4-2 and (2) the most transtropic one 1-1 were

presented in Figures 4 and 5.

A correspondence exists between the anisotropy mode displayed

by mechanical properties, Table I and anisotropy of structure,

Table III.

THEORETICAL

Mathematical Modelling

Free-rise highly porous (P > 90%) foam produced in an open

mould having dimensions l1, l2, and l3 along axis OX1, OX2,

and OX3 were considered. Several cases of the foam structural

anisotropy can arise in dependence of mutual proportions of

mould’s dimensions, Table IV. Elongation of cells in the foam

volume because of relatively big height of mould l31 5 l3/l1 >>

1 and l32 5 l3/l2 >> 1 had to be distinguished from local elon-

gation of cells in the outer crust of a block or because of con-

tact with mould.1–3

The structure of foam can be characterized by probability den-

sity functions of the struts’: (1) length L and (2) spherical coor-

dinates u and h, Figure 6, therefore mathematical modelling of

foam structure was performed in several stages.

Struts’ Spatial Distribution in Isotropic Foam

In isotropic foam the statistical samples of the struts’ length

projections on planes A, B, and C are similar. Then it can be

assumed that struts are distributed spatially evenly and a certain

spatial angle dx corresponds to each strut, dx being measured

by the corresponding square dS on the spherical surface,

Figure 6.

In the mathematical model the struts are considered to emerge

from the center O of a sphere, radius L, the direction of the i-

th strut being defined by spherical coordinates ui and hi, then

dx 5 dS/L2. It was assumed that the spatially even distribution

of struts’ could be achieved by an even distribution of the equal

elementary squares dS0 (Corresponding to a single strut), on

the surface of the sphere, center of a square being intersection

of the strut with sphere surface.

To determine arrays ui and hi of all spatially evenly distrib-

uted struts’, the sphere surface was divided into bands by

steps dh 5 constant along angle h, starting from the equato-

rial plane X1OX2. The spherical coordinates of the bottom

Table III. Parameters of the Theoretical Distribution Functions Smoothing the Experimentally Determined Histograms of Struts’ Projections

Block Speci-men ap
A

E ap
BC

E Da K3 D K3 K3
aver

Place in K3
aver

range

1 1-1 0.15 0.06 0.09 2.50 0.10 2.45 5

1-2 0.12 0.05 0.07 2.40

2 2-1 0.13 0.09 0.04 1.44 0.32 1.28 2

2-2 0.09 0.08 0.01 1.13

3 3-1 0.31 0.16 0.15 1.94 0.17 1.85 4

3-2 0.23 0.13 0.10 1.77

4 4-1 0.31 0.22 0.09 1.41 0.33 1.24 1

4-2 0.27 0.25 0.02 1.08

5 5-1 0.29 0.18 0.11 1.61 0.16 1.53 3

5-2 0.29 0.20 0.09 1.45

Figure 4. LM images of the experimental specimen 4-2, K3 5 1.08, qf 5 79 kg m23, RD "for images B and C. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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(b) and top (t) edges and parallel to them central line of the

k-th band equal to

Hb
k5p=22k dh; ht

k5p=22ðk21Þ dh and hC
k 5p=22ðk11=2Þ dh:

(8)

As symmetry exists along the octants of coordinate system

X1OX2X3 only the first octant (Quarter bands instead of circular

bands) were considered for calculations of ui and hi:

0 � u < p=2; 0 � h � p=2: (9)

Each k-th quarter band had to be divided into elementary

squares by steps duk along u, starting from the positive half-

axis OX1. The area S1 of the first quarter band is S1 5 1/4

(2pLh), where h is the height of the band. Then

S151=4 ð2pL2sin dhÞ51=2 pL2sin dh � 1=2 p L2dh: (10)

For the first quarter band it was assumed du1 5 dh then num-

ber N1 of elementary squares in the first quarter band is

N15p=ð2 duÞ; (11)

and area of an elementary square equals to

dS05dS015S1=N15L2dh du: (12)

The area of the k-th quarter band is Sk 5 1/4 (2pLhk), where hk

is the height of band:

hk5Lðsin ðkdhÞ2sin ððk21ÞdhÞÞ; k51; 2; …; p=ð2dhÞ; then

(13)

Sk51=2 ð2pL2ðsin ðkdhÞ2sin ððk21ÞdhÞÞÞ: (14)

The key assumption of the proposed model was keeping the

area of elementary squares in all bands constant: dS0k5 dS0 5

const. As area Sk of the bands is changing (Decreasing with hk

increasing) it was impossible to perform a precise division of a

Figure 5. LM images of the experimental specimen 1-1, K3 5 2.50, qf 5 33 kg m23, RD "for images B and C. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Table IV. Anisotropy Modes in Dependence of Mould’s Dimensions

N Proportion Anisotropy

Spatial distribution

u h

1 l2 > l1, l3 >> l1, l2 Orthotropy f1(u) f2(h)

2 l1 � l2, l3 >> l1, l2 Transversel isotropy (Transtropy) Even f(h)

3 l1 � l2 � l3 Isotropy Even Even

Figure 6. Elementary squares dS01 and dS0k, corresponding to a single

strut OM1n and OMkm of the first and the k-th bands.
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band (Besides the first one, k 5 1) into squares dS0 because of

a residue, remaining. Therefore an approximate number of

squares dS0 in the k-th band was calculated first:

nk5Sk=dS05pL2 ððsin ðkdhÞ2sin ððk21ÞdhÞÞ=
ðL2dh duÞ; k51; 2; …; p=ð2dhÞ:

(15)

Value of nk was rounded to the nearest integer n’k and value of

dS0k was recalculated for the k-th band:

dS0k5Sk=n0k : (16)

Because of this the step along u for the k-th band had to be

recalculated, too:

duk
05p=ð2n0kÞ; duk05constant for k5constant (17)

For each unevenly numbered band (1, 3, …) the first strut is

placed in the plane X2 5 0, i.e. the first step along u is a half-

step duk/2 to provide more even distribution of elementary

squares. To estimate the precision of division into elementary

squares, the relative difference between dS0 and dS0k was calcu-

lated for each band:

DS0k5ðdS02dS0kÞ=dS0; k51; 2;…; p=ð2dhÞ: (18)

When the value of DS0k became higher than the precision set a

priori, the elementary squares dS0k were calculated from ring

bands 0 � u < 2p instead of quarter bands. That permitted to

retain the necessary precision for dS0k.

Finally hk of all struts in the k-th quarter band were calculated

as coordinates of the center (intersection of diagonals) of the

corresponding elementary square dS0k:

hk5hC
k 5p=22ðk11=2Þ dh; k51; 2; …; p=ð2dhÞ: (19)

The coordinate ukn of the n-th strut in the k-th quarter band

was calculated:

ukn5ð1=21iÞ duk
0; n51; 2; …; nk for even numbered bands and

(20)

ukn5n duk
0; n51; 2; …; nk for uneven numbered bands: (21)

Each pair (ukn, hk) corresponds to a spatial orientation,

assigned to a strut. Ordinal numbers were assigned to each strut

of each quarter band of the first octant and of the upper seg-

ment. The number of all struts in the Model sample was calcu-

lated as a number of the struts in the quarter bands of the first

octant multiplied by 8 plus number of struts in the upper seg-

ment circular bands multiplied by 2.

The arrays of spherical coordinates ui,, hi corresponding to the

quarter bands in the first octant and ring bands on the upper

segment were calculated for steps du1 5 dh 5 2.5� (36 bands,

N 5 816 1 50 5 866 elements) with a PC code “ANGLES”,

developed by the author. Transition from quarter bands to cir-

cular bands was performed when DS0k � 10% starting from hk

> 0.1964 �11.25� (32 quarter bands and four circular bands).

Three of the four circular bands are depicted in Figure 7. That

permitted to retain DS0k < 5% for all elementary squares. In

the result NN 5 8 3 816 1 2 3 50 5 6628 spatial orientations

ui,, hi were obtained for the Model sample, Figure 8. The way

of the struts0 connection into nodes was not considered in the

given model.

Struts’ Length Distribution in Isotropic Foam

In the result of numerical calculations it was found that the his-

tograms for struts0 length samples (Providing length0 projec-

tions0 samples fitting the experimentally determined ones) of

mathematical model were asymmetric, with a maximum shifted

to the smaller values, i.e. the general character of the struts0

length0s distribution function was the same as that of the struts0

length0s projections0 distribution function. Therefore the theo-

retical, numerically calculated struts0 length0s histograms were

smoothed with the probability density function of the following

mode:

Figure 7. Circular bands number k 5 34, 35, and 36 of a hemisphere

with n’k 5 16, 9, and 3 struts.

Figure 8. Number of struts in 36 circular bands of a hemisphere; du 5

dh 5 2.5�.
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f ðL; q; a; bÞ5ALqexp ð2aLbÞ; A51=

ð1
21

f ðL; q; a; bÞdL: (22)

where q 5 1.0, b 5 1.5, and 0.02 � a � 0.35. The parameter a
in isotropic foam was considered to depend solely on foam for-

mulation and other chemical conditions that determine differ-

ent growth potentials of gaseous bubbles.

The values of 6628 struts0 length in the Model sample were dis-

tributed according to function f(L, a), eq. ((22)). A subsample

of N0 5 100 struts0 length L subjected to f(L,a) was considered.

The length of struts was defined in units, the class width h 5 1

unit, number of classes I 5 ROUNDUP(Lmax) and probability

of the i-th class

pi5DpðLi; aÞ5f ðLi; aÞh; Li is the biggest value in a class;

i51; 2; :::; I :
(23)

Frequencies were rounded to the nearest integer value. The sub-

sample was created distributing 100 elements in a matrix [100

3 nmax], where nmax was the number of the last class, having at

least one element. In the result of rounding the final number of

elements in several subsamples differed from N0 5 100 slightly

(N0 5 101, 99, or 98).

Distribution was performed by a PC code “MATRIX”, (*.xls)

developed by the author. An example matrix for n 5 20

demonstrating the distribution principles, is presented in Table

V. Each row corresponds to an element of the subsample. Con-

sidering parameter a 5 0.16, the distribution density function

was

f ðL; aÞ5L exp ð20:16L1:5Þ and mi5f ðLi; 0:16Þn: (24)

A control was made at the end of each row and column to

avoid empty rows or wrongly filled columns. The last column

represents a chain of elements distributed according to the

defined probability distribution function.

Struts0 System in Isotropic Foam

The values in the chain were assigned repeatedly to the spa-

tial orientations in the array of 866 orientations. As there is

no reason for struts in isotropic foam to be directed predom-

inantly in any direction, the angular distribution was assumed

to be even:

f1ðuÞ5const: and f2ðhÞ5const: (25)

Then the Model sample of 6628 struts with definite length dis-

tribution f 5 f(L,a) and spatially even angular distribution was

defined. As a result of symmetry the Model sample was con-

structed by multiplying the 816 elements in the array of the

bands by 8 and 50 elements in the upper segment by 2.

Table V. Matrix and the Chain of Elements

Class number i (Value of Li) 1 2 3 4 5 6 7 8

Amount of elements 3 4 4 3 2 2 1 1 Chain of elements

n

1 6 6

2 3 3

3 2 2

4 1 1

5 5 5

6 3 3

7 4 4

8 2 2

9 8 8

10 6 6

11 1 1

12 3 3

13 2 2

14 4 4

15 5 5

16 3 3

17 1 1

18 2 2

19 7 7

20 4 4

Control 3 8 12 12 10 12 7 8 72
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Struts0 System in Transtropic Foam

Coordinates X1, X2, and X3 can be calculated for the end point

M of the n-th strut from the Model sample of isotropic foam

model, Figure 9:

X1n5Lnsin hncos un; X2n5Lnsin hnsin un; and

X3n5cos hn; n51; 2; …; NN:
(26)

Foam structural anisotropy was implemented by a linear coor-

dinates0 transformation:

X1
05K1X1;X2

05K2X2;X305K3X3; (27)

where K1, K2, and K3 are the coefficients of foam cells elongation

degree along axes OX1, OX2, and OX3. Elongation degrees K1 5

1.0, K2 > 1.0 and K3 > 1.0 for orthotropic foam; K1 5 K2 5 1.0

and K3 > 1.0 for transtropic foam. After transformation X3
0 5 K3

X3 the n-th strut0s length Ln 5 OM became Ln
0 5 OM0:

Ln
05Ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin 2hn1ðK3cos hnÞ2

q
(28)

and its0 coordinate hn became hn
0 5 atan (1/K3 tanhn); un

0 5

un 5 const.

Three arrays characterizing 6628 struts of transtropic foam model

were calculated: (1) Lengths Ln
0, (2) Angles hn

0, and (3) Angles

un
0.

Thus the transtropic foam structural characteristics were derived

from the structure of isotropic foam (“Underlying foam”).

Projections of Transtropic Foam Struts

Elements on the LM images are projections of the foam strut0s
length L0 on the image planes X3 5 const.5 A, X2 5 const.5 B

and X1 5 const. 5 C, Figures 1 and 9. Projections of trans-

tropic foam strut0s length L0 on image planes A, B, and C are

L0AP5 IM05L0sin h0;

L0BP5 CM05½ððL0cos h0Þ � �21ðL0sin h0cos uÞ � �2Þ�1=2;

L0CP5 AM05½ððL0cos h0Þ � �21ðL0sin h0sin uÞ � �2Þ�1=2:

(29)

Projections of the strut0s angle h0 on planes B and C are

H0BP 5atan ðtan h0 cos uÞ;

H0CP 5atan ðtan h0 sin uÞ
(30)

and projection of the angle u0 on plane A is u
0p 5 u 5 const.

Arrays of (1) length projections L0PA, L0PB, L0PC and (2) projec-

tions of struts0 angles H0pC, H0pB and u0 were calculated for

6628 struts of transtropic foam model. When K3 5 1.0, projec-

tions of isotropic foam elements were determined. Nodes were

considered to be spherical. As projections of a spherical node0s
diameter equal to the diameter itself, the diameter can be easily

determined from images.

Characterization of Struts0 System from LM Images Data

The transformation [eq. ((27))] does not change the projections

of struts0 length on plane A. Experimental investigations4 have

approved that the angular and length distribution of struts0

length projections on plane A remain nearly constant for foam

specimens that are cut out from the moulded blocks at different

levels even for mould0s dimensions l1 � l2, l3 >> l1, l2. At the

same time struts0 projections on planes B and C have a more

pronounced orientation parallel to RD for specimens cut out

from bottom levels in comparison to those cut from top levels.

Therefore it was assumed that for a definite chemical formula-

tion foamed in a open mould with definite l31 and l32 the distri-

bution of struts0 length0 projections on A comprises information

about the underlying struts0 length distribution from which the

final transtropic material developed because of the free-rise

foaming in a definite mould. The task for characterization of

the foam spatial structure comprised: (1) determination of the

smoothing functions for experimental struts0 length and angles0

projections on planes A, B, and C, (2) finding such theoretical

distribution of struts length in underlying isotropic foam (spa-

tially even distribution) that provides a distribution of struts0

length projections on plane A equal with the experimentally

observed one, and (3) finding an elongation degree K3 that pro-

vides such distribution of struts0 lengths and angles that distri-

butions of struts0 length and angles0 projections on planes B

and C equal to the experimentally determined ones.

Numerical Calculations

A PC code was developed for numerical calculations, Table VI.

Testing of the model was performed for L 5 1.0 and K 5 1.0,

then f(X1
p) 5 f(X2

p) 5 f(X3
p), i.e. a sample of elements of equal

length, randomly oriented in the space, had to provide equal

Figure 9. Modelling of a strut and its projections in transtropic foam.
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Table VI. Blocks 1 and 2 of the Code “3D FOAM STRUCTURE”

Block 1 “Modelling of isotropic underlying foam”

1 Data input
� K 5 1.0 isotropic foam
� u and h of 816 1 50 5 866 spatially evenly distributed struts of subsample
� The first approximation for struts’ length distribution in underlying isotropic foam: a chain of � 100 struts’ length L,

distribution f(L,a0); a0 5 ap
A

E, where ap
A

E is the parameter of smoothing function of experimentally determined struts’
length’ projections on plane A (Sub code “MATRIX”)

� Precision e for smoothing the histograms
Go to 3

2 n 5 n 1 1

The n-th approximation of underlying isotropic foam struts’ length L distribution: a chain of �100 struts’ length values L,
distribution f(L,a0), where a0 5 aA

E 1/- 0.1 3 n

(Sub code “MATRIX”)

3 Formation of a subsample of 866 struts’ length L, f(L,a0) from the chain of �100 struts’ length

4 Calculation of projections’ of struts’ length for subsample (866 struts):
� X1

p, X2
p and X3

p of struts’ length L on axis OX1, OX2 and OX3 (Test)
� Lp

A of struts’ length L on planes X3 5 const. 5 A

5 Formation of Model samples (816 1 2 3 50 5 6628 struts) of struts’ length projections’:
� X1

p, X2
p and X3

p

� Lp
A

6 Construction of histograms for Model samples of projections:
� X1

p, X2
p and X3

p

� Lp
A

7 Smoothing of histograms of Model samples: determination of functions f(x,a) and corresponding parameters a:
� f(X1

p, a1), f(X2
p, a2), f(X3

p, a3), and a1, a2, a3

� f(Lp
A, aA) and aA

8 Testing of model:

If L 5 1.0 and K 5 1.0 (Isotropic foam), then f(X1
p) 5 f(X2

p) 5 f(X3
p) 6¼ f(a)

9 Comparison of theoretical distribution function f(Lp
A,ap

A) with function fE(Lp
A, ap

A
E), smoothing the histograms, determined experi-

mentally from images A (Sub code “FUNCTIONS”):
� Good correspondence: go to 10
� Bad correspondence: go to 2

10 Underlying isotropic foam have struts’ length distribution f(L, a0), a0

11 End

Block 2 “Modelling of transtropic foam”

1 Data input
� u and h of spatially evenly distributed struts of subsample (816 1 50 5 866 struts)
� Underlying isotropic foam strut length’ distribution f(L, a0) (866 struts)
� The 1-st approximation of transtropic foam cells elongation degree

KE
3 5 dpE

3aver/dpE
1aver 5 dpE

3aver/dpE
2aver; where dpE

1aver, dpE
2aver and dpE

3aver are cell’s diameters’ average projections, deter-
mined experimentally from images A, B, and C

� Precision e for smoothing the histograms
Go to 3

2 n 5 n 1 1

The n-th approximation of elongation degree:

K3 5 K3
E 6 0.1 3 n

3 Implementation of transtropy into subsamples (866 elements) of isotropic foam struts’ length and angles:

X1’ 5 X1, X2’ 5 X2 and X3’ 5 K3 X3

H’ 5 atan (1/ K3 tanh); u’ 5 u 5 const.

4 Formation of Model samples (816 1 2 3 50 5 6628 struts) of struts’ length L’ and angles H’
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samples of projections X1
p, X2

p, and X3
p on the coordinate axis

X1, X2, and X3:

X
p
1 5L0sin h cos u0; X

p
2 5L0sin h sin u0; and X

p
3 5L0cos h: (31)

Testing provided approving results. The Model sample of

6628 struts0 length L0 having length probability density distri-

bution f 5 f(L0, a4) and spatially uneven angular distribution

was calculated. The parameters ap
A

E, ap
B

E, and ap
C

E were

determined using LM images, Table III. As the transformation

[eq. ((27))] does not change the strut0s length projections in

the plane X3 5 const. 5 A, arrays of projections of the

struts0 length on A have to be equal for isotropic and aniso-

tropic foam, i.e. not dependent on elongation degree K3. The

parameter value a0 5 ap
A

E was entered as the first approxi-

mation, where ap
A

E was parameter of theoretical distribution

function of experimentally determined struts0 length0 projec-

tions on image plane A.

The arrays of length0 projections L0pA, L0pB, and L0pC were calcu-

lated and histograms were constructed. Theoretical distribution

functions were found for the histograms. The functions were

compared with the ones for experimentally determined histo-

grams and the next approximation for aA was defined. As a rule

2–3 iterations were enough to find the best fitting value of a0

for underlying foam struts0 length probability density function

f(L,a0).

Practically, instead of a straight-away iteration process for deter-

mination of K3, it was convenient to perform calculations for

fixed values of K3 first: K3 5 1.0, 1.5, 2.0, 2.5, and 3.0. The K3

value providing the closest fit to the experimental data was used

as input value for the first iteration and precise determination

of K3.

RESULTS AND DISCUSSION

Special Cases

At first numerical calculations for several special cases of the

mathematical model were performed, class width h 5 1.0. Case

1: elongation degree varied. All initially spatially and evenly dis-

tributed struts (Underlying foam) have equal initial length L 5

10.0 units 5 const., f(1.0) 5 1.0 and elongation degree varies

1.0 � K3 � 3.0. The graph of probability density distributions

f(L0pA) 5 f(L0pB) 5 f(L0pC) for projections0 L0pA, L0pB, and L0pC

samples when K3 5 1.0 are presented in Figure 10.

Graphs of probability density distribution f for projections L0pA,

L0pB, and L0pC when K3 5 2.0 are presented in Figure 11.

Graphs of f for L0pB and L0pC when K3 equals: (a) 1.0, (b) 1.1,

(c) 1.3, (d) 1.5, (e) 2.0, and (f) 3.0 are presented in Figure 12.

When K3 5 1.0, f(L0pA) 5 f(L0pB) 5 f(L0pC). It is important to

note that graphs of distribution f(L0pA) retain the same character

for any value of K3 and graphs of distributions f(L0pB) and

f(L0pC) are equal: f(L0pB) � f(L0pC) because of transtropy.

Cases 2–7: Underlying isotropic foam varied. All struts are dis-

tributed spatially evenly: K3 5 1.0 5 const., but have different

initial length 1.0 unit � L � 15.0 units. If K3 5 1.0, there is no

elongation and L0 5 L. Function f(L0) is: (a) Even f(L) 5 1/15

5 0.067 (Figure 13), (b) Increasing (Figure 14), (c) Decreasing

(Figure 15), (d) Symmetrically triangular (Figure 16), (e) Nor-

mal (Figure 17), and (f) Asymmetric according to eq. ((22))

(Figure 18). In isotropic foam the mode (As maximum) of dis-

tribution of struts0 projections shifts for several units to the

TABLE VI. Continued

5 Calculation of struts’ length and angles’ projections’ for subsample (866 struts):
� L’pB and L’pC

� H’pB and h’pC

6 Formation of Model samples (6628 struts) of struts’ length and angles’ projections’
� L’pB and L’pC

� H’pB and h’pC

7 Construction of histograms for Model samples (6628 struts) of projections of struts’ length and angles’:
� L’pB and L’pC

� H’pB and h’pC

8 Smoothing histograms of struts’ length and angles’ projections’ Model samples: determination of distribution functions f,
h and corresponding parameters a, b:
� f(L’pB, ap

B) and f(L’pC, ap
C); ap

B and ap
C

� h(h’pB, bp
B) and h(h’Cp, bp

C); bp
B and bp

C

9 Comparison of theoretical distribution functions f(Lp
B, ap

B) and f(Lp
C, ap

C) and h(h’Cp, bp
C), h(h’Bp, bp

B) with functions fE(Lp
B, ap

B
E)

and fE(Lp
C, ap

C
E) and hE(h’pC, bp

C), hE(h’pB, bp
B) smoothing the histograms, determined experimentally from images B and C (Sub

code “FUNCTIONS”):
� Good correspondence: go to 10
� Bad correspondence: go to 2

10 Constructing histograms for Model samples of struts’ length L’ and angles h’

11 Smoothing histograms of struts’ length L’ Model sample: determination of functions f(L’, a4) and corresponding parameters a4

12 Transtropic foam have struts’ length distribution f(L’, a4) and angles’ h’ distribution histograms p(h’)

13 End
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smaller values compared to mode of distribution of struts

themselves. (Figures 16–18).

The results obtained for even, increasing, decreasing, and sym-

metrically triangular distribution functions are similar to those

reported in classical investigations5,6 for modelling distribution

functions of bubbles0 radii from distribution of circles0 radii on

the low-porosity foam sample0s cross section (qf � 220 kgm23).

At the same time the numerical values of f for projections of a

single element value (strt length or sphere0s diameter) differ as

the functions of projections are different.

Struts0 Length

The numerical calculation results revealed: when elongation

degree of foam structure K3 � 3.0, distribution of struts0 length

projections on planes B and C is nearly equal to distribution of

struts0 length L0: aB � aC � a4 and f(L0pB) � f(L0pC) � f(L0).

For several experimental specimens f(L0pB) � f(L0pC) � f(L0) was

achieved already at K3 5 2.5. The struts are oriented along axis

O3 to such a degree that statistical samples of their projections

on planes B and C differ little from the samples of struts0 length

themselves. It means, when foam are markedly transtropic,

struts0 length characteristics can be determined with a sufficient

precision from image B (or C) alone, without analysis of image

A. Further K3 was varied in a range 1.0 � K3 � 3.0 for each

underlying foam (a0).

The calculated parameters aB and aC were compared with the

experimental values, Table III, the fitting ones and the corre-

sponding K3 were determined, Table VII. For all experimental

specimens from cubes 1 parameter a0 of the underlying foam

was bigger (dispersion of L values was smaller) than for foam

from the cubes 2. Different foaming conditions at different

heights of a foam block could exist, e.g. a higher pressure at the

bottom of the block could prevent dispersion in bubbles0 radii

and lead to a smaller dispersion of the struts0 length.

Figure 10. Distribution f of L’pA, L’pB, and L’pC for L 5 10 units 5 const.

and K3 5 1.0.

Figure 11. Distribution f of 1) L’pA and 2) L’pB and L’pC for L 5 10 units 5 const. and K3 5 2.0.

Figure 12. Distribution f of L’pB and L’pC for L 5 10.0 units 5 const. and

K3 values (a) 1.0, (b) 1.1, (c) 1.3, (d) 1.5, (e) 2.0, and (f) 3.0.
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Figure 19 presents dependence of parameter a4 of struts0 length

distribution f(L0,a4) on elongation degree K3 for different

underlying foam: (1) a0 5 0.06, (2) a0 5 0.12, and (3) a0 5

0.25 (the smallest, the medium and the biggest values). The

smaller is the parameter a0, the more dispersed are the values of

struts0 length in the sample. Figure 20 presents a4 of f(L0,a4) in

dependence of underlying foam parameter a0 for different elon-

gation degrees: (1) K3 5 1.0, (2) K3 5 2.0, and (3) K3 5 3.0.

To find the modal class of a variable x distributed according to

f(x), the value xM corresponding to the maximum of f(x) 5 x

exp(2ax1.5) was determined from the condition of extreme:

f 0ðxÞ5exp ð2ax1:5Þð121:5ax1:5Þ50; then xM 50:763 a2=3; (32)

where xM 5 L0M, L0B
p

M, or L0C
p

M. Dependence of xM on a was

presented in Figure 21.

Calculation results for probability distributions of struts0 length

f(L0, a4) and struts0 length projections0 f(L0p, aP
B) of foam speci-

mens were presented in Tables VIII and IX. Several sources8,19

report N 5 200 elements in a statistical sample as the smallest

amount sufficient for determination of distribution functions.

For practical purposes it would be necessary to know L0max
200:

value of the biggest strut length in a sample of 200 struts. E.g.,

if length measurements of 200 struts from the experimental

specimen 1-2 would be available there would be one, the longest

strut having length L0max
200 5 26 units 5 0.47 mm.

Figure 13. (1) f(L) and (2) f(Lp
A), fp(Lp

B) and f(Lp
C); K3 5 1.0.

Figure 14. (1) f(L) and (2) f(Lp
A), f(Lp

B), and f(Lp
C); K3 5 1.0.

Figure 15. (1) f(L) and (2) f(Lp
A), f(Lp

B), and f(Lp
C); K3 5 1.0.

Figure 16. (1) f(L) and (2) f(Lp
A), f(Lp

B), and f(Lp
C); K3 5 1.0.

Figure 17. (1) f(L) and (2) f(Lp
A), f(Lp

B), and f(Lp
C); K3 5 1.0.
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Probability densities of struts length f(L0) and f(L0pB) of struts0

length projections on plane B (or on plane C) for specimens 2-

2 and 4-2 were presented in Figure 22. Because of the small val-

ues of elongation degree K3 5 1.2 and K3 51.1 these specimens

revealed the biggest differences between f(L0) and f(L0pB). The

general character of struts0 length distribution functions corre-

sponds well to the one determined for cells0 average diameters

by the method of mercury absorption tests in Ref. 1.

Struts0 length L0 probability density functions f(L0) for speci-

mens from the second cube 1-2, 2-2, …, 5-2 were presented in

Figure 23 (Scale 1 unit 5 1/55 mm applied). In general speci-

mens from the cubes number 2 revealed bigger differences

between f(L0) and f(L0pB) than specimens from cubes number 1.

That corresponds to experimental data4: foam at the bottom of

the mould have more extended cells than at the top.

For practical purposes it would be necessary to know the rela-

tive difference R between the struts0 average projection on

planes B (C) and average strut length: R 5 (L0pBaver 2 L0aver)/

L0pBaver. Calculations showed that value of R is the biggest for

isotropic foam K3 5 1.0: R � 30%. When elongation degree

increases to K3 5 3.0, R reduces to R � 10%, Figure 24. The

dependence R 5 R(K3) can be approximated by a function

RðK3Þ5R0 K 1:05
3 ; where R05RðK351:0Þ528%: (33)

For the majority of industrially manufactured PUR foam cells

elongation degree is not high K3 � 1.30,1–3 as isotropy of me-

chanical properties is mostly required in practical applications

and difference 28% � R � 24%.

Struts0 Angles

Modelling and numerical calculations0 results showed that dis-

tribution of struts0 angles u as well as projections up on plane

A was even:

f ðuÞ5f ðup
AÞ51=ð2pÞ; as u5up

A: (34)

Even distribution was retained after implementation of trans-

tropy [eq. ((27))], too:

u05u5const: and f ðu0ApÞ5f ðup
AÞ: (35)

Measurements of projections u0pA from LM images A approved

the even character of angles u0 and u0pA distribution for foam

blocks 1–5, considered.

Distribution of angles h0 of the struts in Model sample at: (a)

K3 5 1.0; isotropic foam and (b) K3 5 3.0; anisotropic foam

was presented on Figure 25, class width Dh0 5 10�. Here and

further the first octant was considered. The histograms of angles

and their projections were the same for other octants, too for

isotropic and transtropic foam: p(h0) 5 p(180 – h0), h0 � 90�.
Figure 25 shows a characteristic feature of the mathematical

model when K3 5 1.0 (isotropic structure): although the projec-

tions h0p of h 5 h0 are distributed evenly on an image plane,

the angles h 5 h0 have an uneven distribution with regard to

axis OX3 of a Cartesian reference system, arbitrary placed in the

space. At the same time angular distribution of struts is even

with regard to an arbitrary spatial angle dx. A certain

roughness of the trend in histogram at K3 5 3.0 exists because

of finite value of division steps du1 5 dh 5 2.5�.

Values of projections h0p of angle0s h0 in the Model sample were

calculated and sorted into nine classes, class width Dh0p 5 10�.
The distribution of projections h0pB (or h0pC) on planes B (or

C) was even for the Model sample of struts f(h0pB) 5 1/9 when

K3 5 1.0, Figure 26. When K3 5 3.0 the relative amount of

smaller projections h0pB (or h0pC) increased in comparison to

case when K3 5 1.0.

The calculation results were compared with experimental data

for the specimens 4-2 and 1-1. Specimen 4-2 had the lowest

elongation degree among the specimens, considered: K3 5 1.08

� 1.1 and its structure was the most close to isotropic foam

structure. The experimental data histogram was built for a sta-

tistical sample of 300 elements h0pBC, 150 measured from LM

image B and 150 from image C, Figure 27.

The distribution of angle0s h0 projections h0p was further consid-

ered for the experimental specimen 1-1 that had the highest

elongation degree K3 5 2.50 among the specimens, considered.

The experimental histogram was built for a statistical sample of

300 elements h0pBC, 150 determined from LM image B and 150

from image C, Figure 28.

A good correspondence of experimental data with modelling

results was observed. The differences could be explained by the

existence of some close order of gas bubbles in the foaming

composition as well as action of Earth gravitation on the soft

polymer in the struts of foaming composition that were not

taken into account in the mathematical model.

The general character of experimental and modelling data histo-

grams for angle0s h0 projections h0pB and h0pC (Figures 26–28) sug-

gested choosing the smoothing function of an exponential mode:

hðh0;bÞ5A exp ½2ðh0=10Þb�; h0 > 0; b > 0;

hðh0; bÞ � 0 and A51=

ð90

0

hðh0;bÞdh0;
(36)

where b is a parameter. For the experimental specimens consid-

ered 0.13 � b � 0.50. The best fitting for the most anisotropic

Figure 18. (1) f(L) and (2) f(Lp
A), f(Lp

B), and f(Lp
C); K3 5 1.0.

ARTICLE WILEYONLINELIBRARY.COM/APP

WWW.MATERIALSVIEWS.COM J. APPL. POLYM. SCI. 2014, DOI: 10.1002/APP.3947739477 (16 of 22)

http://onlinelibrary.wiley.com/
http://www.materialsviews.com/


Table VII. Results: ,,M” – Calculations, ,,E” – Experiments, ,,IS” – Isotropic, and ,,TR” – Transtropic

N Specimen Data correspondence ap
A

E a0 K3 ap
B ap

C a4 Aniso-tropy mode R (%)

1 1-1 M 0.15 0.12 1.0 0.15 0.15 0.12 IS 28

2 M 1.1 0.13 0.13 0.10 TR 26

3 M 1.5 0.10 0.10 0.09 TR 19

4 M 2.0 0.09 0.09 0.08 TR 14

5 M, E 2.5 0.06 0.06 0.06 TR 11

6 M 3.0 0.05 0.05 0.05 TR 8

1 1-2 M 0.12 0.09 1.0 0.12 0.12 0.09 IS 28

2 M 1.1 0.09 0.09 0.08 TR 26

3 M 1.5 0.08 0.08 0.06 TR 19

4 M 2.0 0.06 0.06 0.05 TR 14

5 M, E 2.5 0.05 0.05 0.04 TR 11

1 2-1 M 0.13 0.10 1.0 0.13 0.13 0.10 IS 28

2 M 1.1 0.13 0.13 0.10 TR 26

3 M, E 1.5 0.09 0.09 0.08 TR 19

4 M 2.0 0.08 0.08 0.06 TR 14

5 M 2.5 0.06 0.06 0.05 TR 11

1 2-2 M 0.089 0.06 1.0 0.09 0.09 0.06 IS 28

2 M 1.1 0.08 0.08 0.05 TR 26

3 M, E 1.2 0.075 0.075 0.05 TR 25

4 M 1.5 0.06 0.06 0.04 TR 19

5 M 2.0 0.04 0.04 0.04 TR 14

6 M 2.5 0.04 0.04 0.03 TR 11

7 M 3.0 0.03 0.03 0.03 TR 8

1 3-1 M 0.31 0.25 1.0 0.31 0.31 0.25 IS 28

2 M 1.1 0.25 0.25 0.20 TR 26

3 M 1.5 0.22 0.22 0.18 TR 19

4 M, E 2.0 0.16 0.16 0.14 TR 14

5 M 2.5 0.13 0.13 0.13 TR 11

6 M 3.0 0.12 0.12 0.10 TR 8

1 3-2 M 0.23 0.20 1.0 0.23 0.23 0.20 IS 28

2 M 1.1 0.20 0.20 0.17 TR 26

3 M 1.5 0.18 0.18 0.13 TR 19

4 M, E 2.0 0.13 0.13 0.12 TR 14

5 M 2.5 0.10 0.10 0.10 TR 11

1 4-1 M 0.31 0.25 1.0 0.31 0.31 0.25 IS 28

2 M 1.1 0.25 0.25 0.20 TR 26

3 M, E 1.5 0.22 0.22 0.16 TR 19

4 M 2.0 0.16 0.16 0.14 TR 14

5 M 2.5 0.13 0.13 0.13 TS 11

6 M 3.0 0.12 0.12 0.10 TR 8

1 4-2 M 0.27 0.23 1.0 0.27 0.27 0.23 IS 28

2 M, E 1.1 0.25 0.25 0.18 TR 26

3 M 1.3 0.22 0.22 0.16 TR 22

4 M 1.5 0.22 0.22 0.15 TR 19

5 M 2.0 0.16 0.16 0.13 TR 14

6 M 2.5 0.13 0.13 0.12 TR 11

1 5-1 M 0.29 0.23 1.0 0.29 0.29 0.23 IS 28
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specimen 1-1, K3 5 2.5 was at b 5 0.50, for the most isotropic

one 4-2, K3 5 1.1 at b 5 0.13. For isotropic foam, K3 5 1.0

parameter b � 0.02 and probability p(h0pB) 5 1/9 5 0.11 5

const. The fitting of theoretical data to the exponential

smoothing function was very good: k � 0.3 and p(k) � 1.0 and

average of the experimental data: k � 0.8 and p(k) � 0.54

(Kolmogorov0s criterion).19

An orientational parameter g is often used to characterize

cumulatively the angular orientation of elements in a statistical

sample (e.g. short glass fibers in a polymer matrix)8:

g52 < cos 2h > 21; where < cos 2h > 5

X
nðhÞcos 2hX

nðhÞ
; (37)

n(h) is the number of length elements having spherical angle h.

The values of g 5 6 1 indicate two completely aligned states

along the directions h 5 0� and 90�. When g 5 0 the orienta-

tions of elements are considered to be completely random in

Ref. 8. To compare two model assumptions, the g values were

TABLE VII. Continued

N Specimen Data correspondence ap
A

E a0 K3 ap
B ap

C a4 Aniso-tropy mode R (%)

2 M 1.1 0.26 0.26 0.18 TR 26

3 M 1.5 0.22 0.22 0.15 TR 19

4 M, E 1.7 0.18 0.18 0.14 TR 17

5 M 2.0 0.16 0.16 0.13 TR 14

6 M 2.5 0.13 0.13 0.12 TR 11

1 5-2 M 0.29 0.23 1.0 0.29 0.29 0.23 IS 28

2 M 1.1 0.26 0.26 0.18 TR 26

3 M 1.5 0.22 0.22 0.15 TR 19

4 M, E 1.6 0.20 0.20 0.15 TR 18

5 M 2.0 0.16 0.16 0.13 TR 14

6 M 2.5 0.13 0.13 0.12 TR 11

Figure 19. The parameter a4 of f(L’,a4) in dependence of K3 for a0 values

(1) 0.06, (2) 0.12, and (3) 0.25.

Figure 20. The parameter a4 of f(L’, a4) in dependence of a0 for K3 values

(1) 1.0, (2) 2.0, and (3) 3.0.

Figure 21. Dependence of xM on a for (1) 0.001 � a � 0.25 and (2)

specimens 1-1,…, 5-2; 0.042 � a � 0.25.
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calculated, Table X for the samples of angles h0 for the (1) pro-

posed model of spatially random distribution of struts: dS0 5

const. (du 6¼ dh) and for (2) distribution model determined by

equality of the steps over spherical angles du 5 dh 5 const.

(dS0 6¼ const.). When dS0 5 const., values of g were calculated

also for samples of (1.1) h0 at u0 5 45� and (1.2) h0pB (or h0pC).

Several numerical tests of model based on assumption du 5 dh
were performed at K3 5 1.0 (isotropic foam, random spatial

distribution of struts in actual material). The samples of strut

length projections Lp
A, Lp

B, and Lp
C were calculated and found

to be considerably different as well as distributions of angles h0

projections h0pB and h0pC were found to be not even. Since that

does not correspond with experimental data, the model was

rejected. Both tests provided results corresponding with experi-

mental data for assumption dS0 5 const.

Comparison with Experimental Data

To perform additional comparison of modelling results, Table

VII with the available experiment data, Table III, the following

method was used. Data of Table III were divided in two groups

of experimental specimens: (1) 1-1, …, 2-2 having 0.09 � ap
A

E

� 0.15 and (2) 3-1, …, 5-2 having 0.23 � ap
A

E � 0.31. Average

value of ap
A

E for both groups was calculated: (1) ap
A

Eaver � 0.12

and (2) apA
Eaver � 0.28. The averaged parameter ap

A of struts0

projections0 distribution in plane A ap
A

aver was assigned to all

specimens in a group. Since a definite a0 of underlying isotropic

foam corresponds to each ap
A

E, the corresponding a0 was calcu-

lated. Thus an equal underlying struts0 length distribution f(a0)

was provided for all specimens in a group: (1) a0 5 0.09 and

(2) a0 5 0.23.

Among the theoretical data sets the best fitting experimental

specimens with regard to the averaged ap
A

Eaver are (1) 1-2 in

the first group and (2) 5-1 in the second one, Table VII. Theo-

retical graphs of struts0 length projections0 on plane B (or C)

distribution parameter ap
B 5 ap

B(K3) for 1-2 and 5-1 were

depicted in Figure 29 for elongation degrees 1.0 � K3 � 3 to-

gether with experimental data of other specimens from groups

1 and 2. A good correspondence was found to exist between the

theoretical and experimental data, therefore it was concluded

that the proposed model adequately described the main charac-

teristics of isotropic and transtropic free-rise foam strut-like

structure.

CONCLUSIONS

In the given investigation the following main results were

obtained:

1. A methodology was developed for preparing transtropic

foam experimental specimens and investigation of open-cell

Table IX. Characteristics of Struts’ Length Projections’ L’pB (or L’pC) Probability Distribution, Calculation Results

Specimen ap
B L’pBaver (units) L’pBmod (units) f (L’pBmod) Modal class Nr L’pBmax

200 (units) s (unit) v (%)

1-1 0.06 6.6 5.1 0.106 6 20 4.9 74

1-2 0.05 8.0 5.9 0.092 6 22 5.9 73

2-1 0.09 5.2 3.8 0.132 4 16 3.4 66

2-2 0.07 6.2 4.3 0.119 5 18 4.0 65

3-1 0.16 3.5 2.6 0.196 3 11 2.4 70

3-2 0.13 4.1 2.9 0.173 3 13 2.8 68

4-1 0.22 2.8 2.1 0.241 3 9 1.9 66

4-2 0.25 2.4 1.9 0.269 2 9 1.5 63

5-1 0.18 3.2 2.4 0.196 3 11 2.1 67

5-2 0.20 3.0 2.2 0.209 3 11 2.0 66

Table VIII. Characteristics of Struts’ length L’ Probability Distribution; Calculation Results

Specimen a4 L’aver (units) L’mod (units) f(L’mod) Modal class Nr L’max
200 (units) s (units) v (%)

1-1 0.06 7.4 5.1 0.106 6 21 4.9 66

1-2 0.04 8.9 6.4 0.079 7 26 5.8 57

2-1 0.08 6.1 4.0 0.119 5 18 3.5 58

2-2 0.05 7.5 5.5 0.092 6 22 4.2 56

3-1 0.14 4.0 2.8 0.179 3 12 2.4 61

3-2 0.12 4.7 3.2 0.159 4 14 2.8 60

4-1 0.16 3.4 2.6 0.196 3 11 1.9 57

4-2 0.18 3.1 2.4 0.209 3 11 1.7 55

5-1 0.14 3.7 2.8 0.179 3 12 2.1 58

5-2 0.15 3.6 2.7 0.185 3 12 2.1 57
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highly porous plastic foam structure with LM by taking

images in three mutually perpendicular planes correspond-

ing to the principal symmetry axis of foam. Projections of

the main load-carrying elements—polymeric struts0 length

and angles on planes A, B, and C were determined for 10

transtropic foam experimental specimens, qf 5 33, …, 79

kg m23 for statistical samples of up to 300 elements. Param-

eters of the theoretical distribution functions smoothing the

experimentally determined histograms of struts0 projections

were calculated.

Figure 23. Struts’ length distribution f(L’) for specimens (1) 1-2, (2) 2-2,

(3) 3-2, (4) 4-2, and (5) 5-2.

Figure 24. (1) Dependence of the relative difference R on K3 and (2)

approximating function or R 5 R(K3).

Figure 25. Distribution of struts’ angle h’ in Model sample at: (a) K3 5

1.0 (black) and (b) K3 5 3.0 (grey).

Figure 22. Probability distribution (1) f(L’) and (2) f(L’pB) for specimens

2-2 and 4-2.

Figure 26. Distribution of struts’ angles’ projections h’pB (or h’pC) in the

Model sample at: (a) K3 5 1.0, isotropic foam (black) and (b) K3 5 3.0,

anisotropic foam (grey); calculation results.
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2. A mathematical model based on spatially uniform distribu-

tion of struts and a linear transformation of coordinates,

was elaborated for highly porous transtropic PUR foam (P

> 90%) for the determination of the probability density

functions of polymeric struts0 length and angles, using ex-

perimental data from LM images for finding the parameters.

Distribution of struts0 length projections and length them-

selves fit to a power law with an exponential cutoff, distri-

bution of angles h0 projections—to an exponential law. The

histograms of Model sample struts0 angles h0 distribution

were constructed and their general trend evaluated.

3. To determine characteristics of transtropic foam 3D strut-

like structure, a two-stage procedure was developed, com-

prising determination of (a) underlying isotropic foam

struts0 length distribution function and (b) foam cells elon-

gation degree. A block of PC codes was created and parame-

ters of distribution functions for strut0s length and angles

were calculated using experimental data for verification.

4. Several special cases of underlying foam struts0 length prob-

ability density distribution were analysed: (a) even, (b)

increasing, (c) decreasing, (d) symmetrically triangular, (e)

normal, and (f) asymmetric and corresponding distribution

functions determined for struts length projections.

5. A good correspondence of the modelling results with experi-

mental data of five transtropic blocks of highly porous

transtropic PUR foam was proved to exist. It was concluded

that information on struts0 length distribution was com-

prised mainly in LM images A having image plane parallel

to the plane of isotropy and information on foam cells elon-

gation degree—mainly in images B and C having plane of

image perpendicular to it.

6. The differences between the projections and elements them-

selves (length and angles) were considered for the range of

practically most widely occurring elongation degrees of free-

rise PUR foam: 1.0 � K3 � 3.0. Numerical calculations

revealed that the relative difference between the struts0 aver-

age projection0s length on planes B (or C) and average strut

length is the biggest for isotropic foam: � 30%. When elon-

gation degree increases to 3.0, the relative difference reduces

to 10% and analysis of image B is sufficient for characteriza-

tion of struts0 length distribution.

The experimental method and mathematical model are directly

applicable to characterization of actual spatial strut-like struc-

ture of open cell plastic foam: PUR, reticulated polyvinylchlor-

ide, cellular rubber as well as natural open-cell materials:

sponge, chancellous bone, fiberous materials, etc. The principles

of the developed mathematical and computational modelling

could be adapted for characterization of 3-D structure of (a)

closed-cell plastic foam comprising polymeric platelets instead

of struts, (b) orthotropic foam both open- and closed-cell, and

Figure 27. Distribution of struts’ angle’s projections h’pBC B 1 C for ex-

perimental specimen 4-2, K3 51.10: (a) modelling (black) and (b) experi-

mental results (grey).

Figure 28. Distribution of angle’s h’p projections h’pBC on planes B 1 C

for experimental specimen 1-1, K3 5 2.50: (a) modelling (black) and (b)

experimental data (grey).

Table X. Orientational Parameter g for Different Models of Spatially Ran-

dom Distribution of Struts

g

N Model
Sample
elements

K3 5 1.0
(random)

K3 5 3.0
(oriented)

1 dS0 5 const. h’ 20.35 0.30

2 h’ at u’ 5 45� 0.00 0.53

3 h’pB (or h’pC) 0.00 0.53

4 du 5 dh 5 const. h’ 0.00 0.53

Figure 29. Parameter ap
B 5 ap

B (K3). Theoretical curves: 1 - specimen 1 -

2 and 2 - specimen 5 - 1. Experimental data: ~- group 1, � - group 2.
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(c) short fibers (steel, glass, carbon, etc.) imbedded in a matrix

(polymer, concrete, etc.). Further investigations would be per-

formed on structural characterization of orthotropic strut-like

structures.
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